本篇文章给大家谈谈四节点有限元分析怎么做,以及四节点单元形函数对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔,本文目录一览:,1、,有限元法的运用步骤,2、,有限元分析方法是指什么?
本篇文章给大家谈谈四节点有限元分析怎么做,以及四节点单元形函数对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。
本文目录一览:
有限元法的运用步骤
步骤1:剖分:
将待解区域进行分割,离散成有限个元素的集合。元素(单元)的形状原则上是任意的。二维问题一般采用三角形单元或矩形单元,三维空间可采用四面体或多面体等。每个单元的顶点称为节点(或结点)。
步骤2:单元分析:
进行分片插值,即将分割单元中任意点的未知函数用该分割单元中形状函数及离散网格点上的函数值展开,即建立一个线性插值函数。
步骤3:求解近似变分方程
用有限个单元将连续体离散化,通过对有限个单元作分片插值求解各种力学、物理问题的一种数值方法。有限元法把连续体离散成有限个单元:杆系结构的单元是每一个杆件;连续体的单元是各种形状(如三角形、四边形、六面体等)的单元体。每个单元的场函数是只包含有限个待定节点参量的简单场函数,这些单元场函数的集合就能近似代表整个连续体的场函数。根据能量方程或加权残量方程可建立有限个待定参量的代数方程组,求解此离散方程组就得到有限元法的数值解。有限元法已被用于求解线性和非线性问题,并建立了各种有限元模型,如协调、不协调、混合、杂交、拟协调元等。有限元法十分有效、通用性强、应用广泛,已有许多大型或专用程序系统供工程设计使用。结合计算机辅助设计技术,有限元法也被用于计算机辅助制造中。
有限单元法最早可上溯到20世纪40年代。Courant第一次应用定义在三角区域上的分片连续函数和最小位能原理来求解St.Venant扭转问题。现代有限单元法的第一个成功的尝试是在 1956年,Turner、Clough等人在分析飞机结构时,将钢架位移法推广应用于弹性力学*面问题,给出了用三角形单元求得*面应力问题的正确答案。1960年,Clough进一步处理了*面弹性问题,并第一次提出了有限单元法,使人们认识到它的功效。
50年代末60年代初,中国的计算数学刚起步不久,在对外隔绝的情况下,冯康带领一个小组的科技人员走出了从实践到理论,再从理论到实践的发展中国计算数学的成功之路。当时的研究解决了大量的有关工程设计应力分析的大型椭圆方程计算问题,积累了丰富而有效的经验。冯康对此加以总结提高,作出了系统的理论结果。1965年冯康在《应用数学与计算数学》上发表的论文《基于变分原理的差分格式》,是中国独立于西方系统地创始了有限元法的标志。
有限元法常应用于流体力学、电磁力学、结构力学计算,使用有限元软件ANSYS、COMSOL等进行有限元模拟,在预研设计阶段代替实验测试,节省成本。
有限元分析方法是指什么?
有限元分析(FEA,Finite Element Analysis)利用数学近似的方法对真实物理系统(几何和载荷工况)进行模拟。利用简单而又相互作用的元素(即单元),就可以用有限数量的未知量去逼近无限未知量的真实系统。
有限元分析是用较简单的问题代替复杂问题后再求解。它将求解域看成是由许多称为有限元的小的互连子域组成,对每一单元假定一个合适的(较简单的)近似解,然后推导求解这个域总的满足条件(如结构的*衡条件),从而得到问题的解。
因为实际问题被较简单的问题所代替,所以这个解不是准确解,而是近似解。由于大多数实际问题难以得到准确解,而有限元不仅计算精度高,而且能适应各种复杂形状,因而成为行之有效的工程分析手段。
扩展资料:
有限元方法与其他求解边值问题近似方法的根本区别在于它的近似性仅限于相对小的子域中。20世纪60年代初首次提出结构力学计算有限元概念的克拉夫(Clough)教授形象地将其描绘为:“有限元法=Rayleigh Ritz法+分片函数”,即有限元法是Rayleigh Ritz法的一种局部化情况。
不同于求解(往往是困难的)满足整个定义域边界条件的允许函数的Rayleigh Ritz法,有限元法将函数定义在简单几何形状(如二维问题中的三角形或任意四边形)的单元域上(分片函数),且不考虑整个定义域的复杂边界条件,这是有限元法优于其他近似方法的原因之一。
结构百问14-Abaqus节点有限元分析
以某锁网结构为例四节点有限元分析怎么做,总结一下利用Abaqus进行三维节点实体单元有限元分析的步骤。
可以直接在Abaqus中建模四节点有限元分析怎么做,也可以通过软件转换建模。
例如,已有CAD三维模型,可以通过犀牛软件打开,导出为sat文件,然后在Abaqus中导入sat文件,生成part。
对于本为一体的多个part,可以通过merge操作合并为一个part,从而免去后续繁杂的接触定义。
(1)首先定义材性,对于常见的钢材可使用理想弹塑性模型;
(2)定义截面,对于实体模型,Type:Solid,Homogeneous;
(3)指定截面,将定义好的截面指定给部件。
将不同的part移动到正确的位置组装成要分析的完整模型,同一个part可以生成多个实例。
对于静态加载,使用Static,General即可。
常见的接触类型包括Surface-to-surface contact(面面接触),Tie(绑定),Coupling(耦合)等,可以按需定义。
在Initial中定义边界条件,在Step-1中定义荷载。此处固定两个钢管端面,在锁头端面施加拉力,拉力通过换算成压强Pressure的形式施加。
常规形状的模型可以使用C3D8R的六面体网格,对于形状怪异,无法通过八面体网格划分的模型需要使用C3D10或者C3D4的四面体网格。当然,C3D4网格的计算收敛性不如C3D8R。
创建分析作业,并提交。可以通过使用多核CPU并行计算提高计算速度。
分析完成后可以查看节点的应力应变状态。
Mises应力最大值为882.5MPa,应力最大位置为锚具叉耳接头处。节点核心区应力最大值出现在加劲肋端部与钢管连接处,且达到屈服应力。
PEEQ大于0的位置表示进入塑性状态。从结果来看,节点核心区塑性应变最大值出现在加劲肋端部与钢管连接处,其四节点有限元分析怎么做他位置均处于弹性状态。
-2017年1月8日
有限元分析的学习
ANSYS软件提供的仿真分析类型:
1.结构静力分析
用来求解外载荷引起的位移、应力和力。静力分析很适合求解惯性和阻尼对结构的影响并不显著的问题。ANSYS程序中的静力分析不仅可以进行线性分析,而且也可以进行非线性分析,如塑性、蠕变、膨胀、大变形、大应变及接触分析。
2.结构动力学分析
结构动力学分析用来求解随时间变化的载荷对结构或部件的影响。与静力分析不同,动力分析要考虑随时间变化的力载荷以及它对阻尼和惯性的影响。ANSYS可进行的结构动力学分析类型包括:瞬态动力学分析、模态分析、谐波响应分析及随机振动响应分析。
3.结构非线性分析
结构非线性导致结构或部件的响应随外载荷不成比例变化。ANSYS程序可求解静态和瞬态非线性问题,包括材料非线性、几何非线性和单元非线性三种。
4.动力学分析
ANSYS程序可以分析大型三维柔体运动。当运动的积累影响起主要作用时,可使用这些功能分析复杂结构在空间中的运动特性,并确定结构中由此产生的应力、应变和变形。
5.热分析
程序可处理热传递的三种基本类型:传导、对流和辐射。热传递的三种类型均可进行稳态和瞬态、线性和非线性分析。热分析还具有可以模拟材料固化和熔解过程的相变分析能力以及模拟热与结构应力之间的热-结构耦合分析能力。
6.电磁场分析
主要用于电磁场问题的分析,如电感、电容、磁通量密度、涡流、电场分布、磁力线分布、力、运动效应、电路和能量损失等。还可用于螺线管、调节器、发电机、变换器、磁体、加速器、电解槽及无损检测装置等的设计和分析领域。
7.流体动力学分析
ANSYS流体单元能进行流体动力学分析,分析类型可以为瞬态或稳态。分析结果可以是每个节点的压力和通过每个单元的流率。并且可以利用后处理功能产生压力、流率和温度分布的图形显示。另外,还可以使用三维表面效应单元和热-流管单元模拟结构的流体绕流并包括对流换热效应。
8.声场分析
程序的声学功能用来研究在含有流体的介质中声波的传播,或分析浸在流体中的固体结构的动态特性。这些功能可用来确定音响话筒的频率响应,研究音乐大厅的声场强度分布,或预测水对振动船体的阻尼效应。
9.压电分析
用于分析二维或三维结构对AC(交流)、DC(直流)或任意随时间变化的电流或机械载荷的响应。这种分析类型可用于换热器、振荡器、谐振器、麦克风等部件及其它电子设备的结构动态性能分析。可进行四种类型的分析:静态分析、模态分析、谐波响应分析、瞬态响应分析
有限元分析是什么东西
有限元分析是通过使用有限元方法四节点有限元分析怎么做,分析结构力学四节点有限元分析怎么做,传热四节点有限元分析怎么做,电磁学等等个方面的问题。有限元方法是一种数学方法四节点有限元分析怎么做,准确说应该算是数值解法。在分析复杂结构等问题时,往往无法得到解析解。这是用过将问题分割为很多小的结构,对这些小的单元建立*衡方程,然后将各个单元的关系集成一个大的矩阵,并利用计算机的计算性能,分析求解。这样就求得了整个问题的目标量。
有限元分析学习心得
有限单元法是随着电子计算机四节点有限元分析怎么做的发展而迅速发展起来的一种现代计算方法。它是50年代首先在连续体力学领域--飞机结构静、动态特性分析中应用的一种有效的数值分析方法四节点有限元分析怎么做,随后很快广泛的应用于求解热传导、电磁场、流体力学等连续性问题。 有限元法分析计算的思路和做法可归纳如下四节点有限元分析怎么做: 1) 物体离散化 将某个工程结构离散为由各种单元组成的计算模型,这一步称作单元剖分。离散后单元与单元之间利用单元的节点相互连接起来;单元节点的设置、性质、数目等应视问题的性质,描述变形形态的需要和计算进度而定(一般情况单元划分越细则描述变形情况越精确,即越接近实际变形,但计算量越大)。所以有限元中分析的结构已不是原有的物体或结构物,而是同新材料的由众多单元以一定方式连接成的离散物体。这样,用有限元分析计算所获得的结果只是近似的。如果划分单元数目非常多而又合理,则所获得的结果就与实际情况相符合。 2) 单元特性分析 A、 选择位移模式 在有限单元法中,选择节点位移作为基本未知量时称为位移法;选择节点力作为基本未知量时称为力法;取一部分节点力和一部分节点位移作为基本未知量时称为混合法。位移法易于实现计算自动化,所以,在有限单元法中位移法应用范围最广。 当采用位移法时,物体或结构物离散化之后,就可把单元总的一些物理量如位移,应变和应力等由节点位移来表示。这时可以对单元中位移的分布采用一些能逼近原函数的近似函数予以描述。通常,有限元法我们就将位移表示为坐标变量的简单函数。这种函数称为位移模式或位移函数,如y= 其中 是待定系数, 是与坐标有关的某种函数。 B、 分析单元的力学性质 根据单元的材料性质、形状、尺寸、节点数目、位置及其含义等,找出单元节点力和节点位移的关系式,这是单元分析中的关键一步。此时需要应用弹性力学中的几何方程和物理方程来建立力和位移的方程式,从而导出单元刚度矩阵,这是有限元法的基本步骤之一。 C、 计算等效节点力 物体离散化后,假定力是通过节点从一个单元传递到另一个单元。但是,对于实际的连续体,力是从单元的公共边传递到另一个单元中去的。因而,这种作用在单元边界上的表面力、体积力和集中力都需要等效的移到节点上去,也就是用等效的节点力来代替所有作用在单元上得力。 3) 单元组集 利用结构力的*衡条件和边界条件把各个单元按原来的结构重新连接起来,形成整体的有限元方程(1-1)式中,K是整体结构的刚度矩阵;q是节点位移列阵;f是载荷列阵。 4) 求解未知节点位移 解有限元方程式(1-1)得出位移。这里,可以根据方程组的具体特点来选择合适的计算方法。 通过上述分析,可以看出,有限单元法的基本思想是"一分一合",分是为了就进行单元分析,合则为了对整体结构进行综合分析。 有限元的发展概况 1943年 courant在论文中取定义在三角形域上分片连续函数,利用最小势能原理研究St.Venant的扭转问题。 1960年 clough的*面弹性论文中用“有限元法”这个名称。 1970年 随着计算机和软件的发展,有限元发展起来。 涉及的内容:有限元所依据的理论,单元的划分原则,形状函数的选取及协调性。 有限元法涉及:数值计算方法及其误差、收敛性和稳定性。 应用范围:固体力学、流体力学、热传导、电磁学、声学、生物力学 求解的情况:杆、梁、板、壳、块体等各类单元构成的弹性(线性和非线性)、弹塑性或塑性问题(包括静力和动力问题)。能求解各类场分布问题(流体场、温度场、电磁场等的稳态和瞬态问题),水流管路、电路、润滑、噪声以及固体、流体、温度相互作用的问题。
四节点有限元分析怎么做的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于四节点单元形函数、四节点有限元分析怎么做的信息别忘了在本站进行查找喔。