本文作者:钢结构设计

四节点有限元分析(有限元四节点矩形单元例题)

钢结构设计 2周前 ( 11-23 19:49 ) 6607 抢沙发
今天给各位分享四节点有限元分析的知识,其中也会对水四节点有限元分析进行解释,如果能碰巧解决你现在面临的问题,别忘了关注我们哦,现在开始吧!

今天给各位分享四节点有限元分析的知识,其中也会对水四节点有限元分析(有限元四节点矩形单元例题)进行解释,如果能碰巧解决你现在面临的问题,别忘了关注我们哦,现在开始吧!

本文目录

ansys应力分析云图,请解释一下下图的含义.如题.单元类型为beam.请问,我们能从应力云图中得到哪些对设计有意义的数据

可以从图中看到最大应力,即红色区域的值,上面有数据,然后与材料的许用应力相比较,如果在允许的范围内,则可以判断出满足材料的强度要求.还可以看最大变形,在通过计算求得刚度,与材料的许用刚度比较,同样可以判断刚度是否满足要求.
但我看你的是单元的最大应力,我们一般看的是节点应力~

有限差分法(Finite Difference)、有限体积法(Finite Volume)、有限元法(Finite element)怎样辨析

有限差分方法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用.该方法将 求解域划分为差分网格,用有限个网格节点代替连续的求解域.有限差分法以Taylor级 数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而 建立以网格节点上的值为未知数的代数方程组.该方法是一种直接将微分问题变为代数 问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法.   对于有限差分格式,从格式的精度来划分,有一阶格式、二阶格式和高阶格式.从差分 的空间形式来考虑,可分为中心格式和逆风格式.考虑时间因子的影响,差分格式还可 以分为显格式、隐格式、显隐交替格式等.目前常见的差分格式,主要是上述几种形式 的组合,不同的组合构成不同的差分格式.差分方法主要适用于有结构网格,网格的步 长一般根据实际地形的情况和柯朗稳定条件来决定.\x0d  构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法.其基本的差分表达 式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等, 其中前两种格式为一阶计算精度,后两种格式为二阶计算精度.通过对时间和空间这几 种不同差分格式的组合,可以组合成不同的差分计算格式.\x0d  有限元方法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分 方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式 ,借助于变分原理或加权余量法,将微分方程离散求解.采用不同的权函数和插值函数形式,便构成不同的有限元方法.有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学的数值模拟.在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成.在河道数值模拟中,常见的有限元计算方法是由变分法和加权余量法发展而来的里兹法和伽辽金法、最小二乘法等.根据所采用的权函数和插值函数的不同,有限元方法也分为多种计算格式.从权函数的选择来说,有配置法、矩量法、最小二乘法和伽辽金法,从计算单元网格的形状来划分,有三角形网格、四边形网格和多边形 网格,从插值函数的精度来划分,又分为线性插值函数和高次插值函数等.不同的组合 同样构成不同的有限元计算格式.对于权函数,伽辽金(Galerkin)法是将权函数取为逼近函数中的基函数 ;最小二乘法是令权函数等于余量本身,而内积的极小值则为对代求系数的平方误差最小;在配置法中,先在计算域 内选取N个配置点 .令近似解在选定的N个配置点上严格满足微分方程,即在配置点上令方程余量为0.插值函数一般由不同次幂的多项式组成,但也有采用三角函数或指数函数组成的乘积表示,但最常用的多项式插值函数.有限元插值函数分为两大类,一类只要求插值多项式本身在插值点取已知值,称为拉格朗日(Lagrange)多项式插值;另一种不仅要求插值多项式本身,还要求它的导数值在插值点取已知值,称为哈密特(Hermite)多项式插值.单元坐标有笛卡尔直角坐标系和无因次自然坐标,有对称和不对称等.常采用的无因次坐标是一种局部坐标系,它的定义取决于单元的几何形状,一维看作长度比,二维看作面积比,三维看作体积比.在二维有限元中,三角形单元应用的最早,近来四边形等参元的应用也越来越广.对于二维三角形和四边形电源单元,常采用的插值函数为有Lagrange插值直角坐标系中的线性插值函数及二阶或更高阶插值函数、面积坐标系中的线性插值函数、二阶或更高阶插值函数等.\x0d对于有限元方法,其基本思路和解题步骤可归纳为\x0d(1)建立积分方程,根据变分原理或方程余量与权函数正交化原理,建立与微分方程初边值问题等价的积分表达式,这是有限元法的出发点.\x0d(2)区域单元剖分,根据求解区域的形状及实际问题的物理特点,将区域剖分为若干相互连接、不重叠的单元.区域单元划分是采用有限元方法的前期准备工作,这部分工作量比较大,除了给计算单元和节点进行编号和确定相互之间的关系之外,还要表示节点的位置坐标,同时还需要列出自然边界和本质边界的节点序号和相应的边界值.\x0d(3)确定单元基函数,根据单元中节点数目及对近似解精度的要求,选择满足一定插值条 件的插值函数作为单元基函数.有限元方法中的基函数是在单元中选取的,由于各单元 具有规则的几何形状,在选取基函数时可遵循一定的法则.\x0d(4)单元分析:将各个单元中的求解函数用单元基函数的线性组合表达式进行逼近;再将 近似函数代入积分方程,并对单元区域进行积分,可获得含有待定系数(即单元中各节点 的参数值)的代数方程组,称为单元有限元方程.\x0d(5)总体合成:在得出单元有限元方程之后,将区域中所有单元有限元方程按一定法则进 行累加,形成总体有限元方程.\x0d(6)边界条件的处理:一般边界条件有三种形式,分为本质边界条件(狄里克雷边界条件 )、自然边界条件(黎曼边界条件)、混合边界条件(柯西边界条件).对于自然边界条件, 一般在积分表达式中可自动得到满足.对于本质边界条件和混合边界条件,需按一定法 则对总体有限元方程进行修正满足.\x0d(7)解有限元方程:根据边界条件修正的总体有限元方程组,是含所有待定未知量的封闭 方程组,采用适当的数值计算方法求解,可求得各节点的函数值.\x0d有限体积法(Finite Volume Method)又称为控制体积法.其基本思路是:将计算区域划分为一系列不重复的控制体积,并使每个网格点周围有一个控制体积;将待解的微分方程对每一个控制体积积分,便得出一组离散方程.其中的未知数是网格点上的因变量的数值.为了求出控制体积的积分,必须假定值在网格点之间的变化规律,即假设值的分段的分布的分布剖面.从积分区域的选取方法看来,有限体积法属于加权剩余法中的子区域法;从未知解的近似方法看来,有限体积法属于采用局部近似的离散方法.简言之,子区域法属于有限体积发的基本方法.\x0d有限体积法的基本思路易于理解,并能得出直接的物理解释.离散方程的物理意义,就 是因变量在有限大小的控制体积中的守恒原理,如同微分方程表示因变量在无限小的控 制体积中的守恒原理一样. 限体积法得出的离散方程,要求因变量的积分守恒对任意一组控制体积都得到满足,对整个计算区域,自然也得到满足.这是有限体积法吸引人的优点.有一些离散方法,例如有限差分法,仅当网格极其细密时,离散方程才满足积分守恒;而有限体积法即使在粗网格情况下,也显示出准确的积分守恒.就离散方法而言,有限体积法可视作有限单元法和有限差分法的中间物.有限单元法必须假定值在网格点之间的变化规律(既插值函数),并将其作为近似解.有限差分法只考虑网格点上的数值而不考虑值在网格点之间如何变化.有限体积法只寻求的结点值,这与有限差分法相类似;但有限体积法在寻求控制体积的积分时,必须假定值在网格点之间的分布,这又与有限单元法相类似.

有限元平面问题有几个自由度

(1)首先你可以理解一个节点应该有6个自由度(包括三个平动方向和三个转动方向,x,y,z,rx,ry,rz);(2)对于梁单元(你所说的线单元),其单元节点在6个自由度均有刚度,因此其节点需要考虑6个自由度;对于一般的壳单元,其节点除了绕壳平面转动的自由度没有刚度,其余5个自由度均有刚度;对于实体单元,转动自由度没有刚度。(3)因此,对于单纯的实体元问题,只需要考虑3个平动自由度,因为3个转动自由度没有刚度,也没有外力;对于单纯的平面壳也是一样;而对于混合的情况,如梁单元与壳单元组合的情况下,节点应该考虑6个自由度。不知道你明白了没有,欢迎追问。

几何建模方法的原理

几何建模就是形体的描述和表达,是建立在几何信息和拓扑信息基础的建模。其主要处理零件的几何信息和拓扑信息。原理:1、几何建模。首先表示分析对象的空间几何位置关系。几何建模不是简单的几何画图,而是要考虑到几何模型是用来生成有限元网格的,因此要根据将生成的有限元网格的需要进行几何建模。如果开始只是一味地根据图纸完全照搬地进行几何作图,这样生成的几何模型很可能在进行网格划分时遇到问题,这时候就需要返回来修改几何模型,造成时间上的浪费。2、生成网格。有了几何模型,就可以用网格自动划分技术生成网格。有时候可以没有几何模型,直接生成有限元网格。有时候可以生成部分几何模型,在此基础上生成分析需要的全部网格。3、定义材料。工程结构都是由特定材料制成的,相同的材料在不同的载荷环境下也会表现出不同的力学性能,例如金属在载荷不大时产生的变形是可以恢复的,当载荷大到一定程度时就会产生不可恢复的永久变形。我们建模时定义材料模型及其参数,要和实际结构的材料力学行为相一致。4、定义单元特性。划分网格只是确定网格的几何拓扑关系,如一维、二维、三维单元,线性单元、高阶单元。定义单元特性,是要赋予单元以物理特性,使单元具有力学意义。单元特性包括单元的材料属性和几何属性。单元几何属性,例如梁单元的横截面形状,板单元的厚度。5、定义载荷和边界条件。结构都是在一定环境下工作的,要受到约束和载荷。正确处理载荷是非常重要的。加载的和单元的类型有一定关系,例如三维体单元的节点只有三个平动自由度,节点上只能加力不能加力矩,如果有力矩存在就需要转换成适当的力偶(实际上力矩是个概念,客观世界里存在力偶而没有力矩)。而板单元梁单元的节点既有平动自由度也有转动自由度,就可以直接加力和力矩。6、设定求解方法和求解参数,确定输出的计算结果。这时候建模基本完成,需要根据求解问题类型,从数值计算的角度选择恰当的计算方法,要兼顾到计算精度、计算速度和计算稳定性。7、对计算结果进行处理和评价。建模完成后,根据问题类型不同把数据提交给不同的求解器MSC.Natran、MSC.Marc、MSC.Dytran等进行计算,计算结果由MSC.Patran读入进行后处理。如果发现计算结果有问题,就需要查找原因,重新计算。

工程分析中的有限元法的主要内容是什么

它将求解域看成是由许多称为有限元的小的互连子域组成,对每一单元假定一个合适的 (较简单的)近似解,然后推导求解这个域总的满足条件(如结构的平衡条件),从而得到问题的解.这个解不是准确解,而是近似解,因为实际问题被较简单的问题所代替.由于大多数实际问题难以得到准确解,而有限元不仅计算精度高,而且能适应各种复杂形状,因而成为行之有效的工程分析手段.  有限元是那些集合在一起能够表示实际连续域的离散单元.有限元的概念早在几个世纪前就已产生并得到了应用,例如用多边形(有限个直线单元)逼近圆来求得圆的周长,但作为一种方法而被提出,则是最近的事.有限元法最初被称为矩阵近似方法,应用于航空器的结构强度计算,并由于其方便性、实用性和有效性而引起从事力学研究的科学家的浓厚兴趣.经过短短数十年的努力,随着计算机技术的快速发展和普及,有限元方法迅速从结构工程强度分析计算扩展到几乎所有的科学技术领域,成为一种丰富多彩、应用广泛并且实用高效的数值分析方法.  有限元方法与其他求解边值问题近似方法的根本区别在于它的近似性仅限于相对小的子域中.20世纪60年代初首次提出结构力学计算有限元概念的克拉夫(Clough)教授形象地将其描绘为:“有限元法=Rayleigh Ritz法+分片函数”,即有限元法是Rayleigh Ritz法的一种局部化情况.不同于求解(往往是困难的)满足整个定义域边界条件的允许函数的Rayleigh Ritz法,有限元法将函数定义在简单几何形状(如二维问题中的三角形或任意四边形)的单元域上(分片函数),且不考虑整个定义域的复杂边界条件,这是有限元法优于其他近似方法的原因之一.  对于不同物理性质和数学模型的问题,有限元求解法的基本步骤是相同的,只是具体公式推导和运算求解不同.有限元求解问题的基本步骤通常为:  第一步:问题及求解域定义:根据实际问题近似确定求解域的物理性质和几何区域.  第二步:求解域离散化:将求解域近似为具有不同有限大小和形状且彼此相连的有限个单元组成的离散域,习惯上称为有限元网络划分.显然单元越小(网络越细)则离散域的近似程度越好,计算结果也越精确,但计算量及误差都将增大,因此求解域的离散化是有限元法的核心技术之一.  第三步:确定状态变量及控制方法:一个具体的物理问题通常可以用一组包含问题状态变量边界条件的微分方程式表示,为适合有限元求解,通常将微分方程化为等价的泛函形式.  第四步:单元推导:对单元构造一个适合的近似解,即推导有限单元的列式,其中包括选择合理的单元坐标系,建立单元试函数,以某种方法给出单元各状态变量的离散关系,从而形成单元矩阵(结构力学中称刚度阵或柔度阵).  为保证问题求解的收敛性,单元推导有许多原则要遵循.对工程应用而言,重要的是应注意每一种单元的解题性能与约束.例如,单元形状应以规则为好,畸形时不仅精度低,而且有缺秩的危险,将导致无法求解.  第五步:将单元总装形成离散域的总矩阵方程(联合方程组),反映对近似求解域的离散域的要求,即单元函数的连续性要满足一定的连续条件.总装是在相邻单元结点进行,状态变量及其导数(可能的话)连续性建立在结点处.  第六步:联立方程组求解和结果解释:有限元法最终导致联立方程组.联立方程组的求解可用直接法、选代法和随机法.求解结果是单元结点处状态变量的近似值.对于计算结果的质量,将通过与设计准则提供的允许值比较来评价并确定是否需要重复计算.  简言之,有限元分析可分成三个阶段,前处理、处理和后处理.前处理是建立有限元模型,完成单元网格划分;后处理则是采集处理分析结果,使用户能简便提取信息,了解计算结果.

四节点有限元分析四节点有限元分析(有限元四节点矩形单元例题)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

微信扫一扫打赏

阅读
分享